Building diagnostics and material characterization in the field of heritage protection

Farkas Pintér

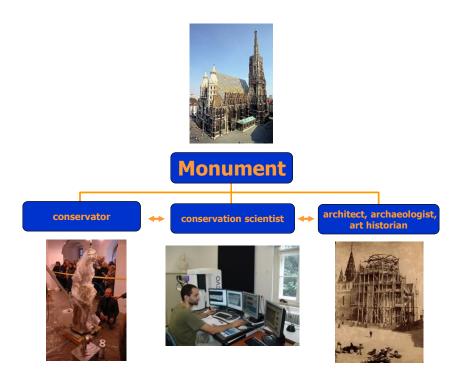
Federal Monuments Authority Austria

BUTE Dept. of Construction Technology and Management November 19th 2019

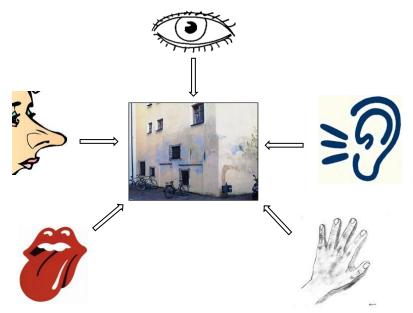
The complexity of monumental research and conservation

ENVIRONMENT: T, precipitation, rH, radiation, pollutants, orientation

BUILDING MATERIALS: (historic-modern)

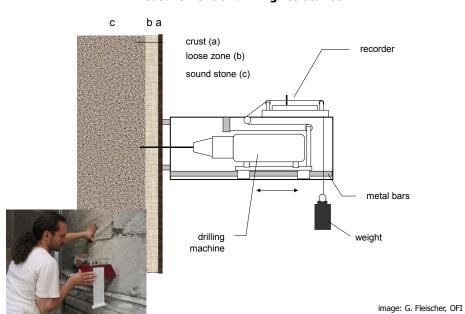


HISTORY: ([re]construction, restoration)

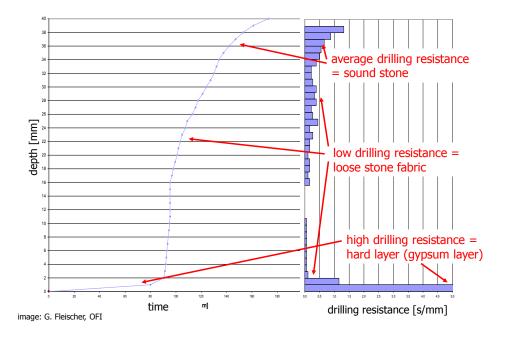

> DEMANDS-PLANS: (owner, executor, authorities)

<u>USE</u>: (private, sacral, turistic, etc.)

FINANCIAL POSSIBILITIES


The basics of monumental investigation – Use your sences: see – touch – hear – smell – taste

Documentation, mapping



limestone (CaCO₃) rain water + SO_2 Graphik: G. Hilbert H₂SO₄ 71 5 LAX . sulfation precipitation gypsum crust shell toose zone tavity sound stone strength strength profile

Theoretical strengh profile along a weathered porous limestone

Strength profile in a porous limestone affected by external sulfation

Controll of the efficiency of stone consolidation

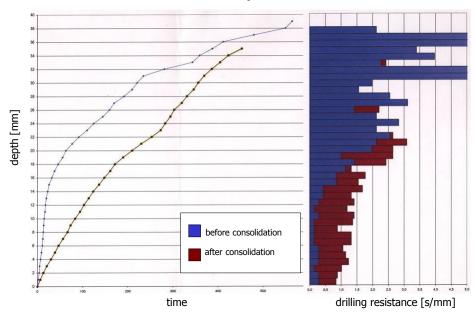
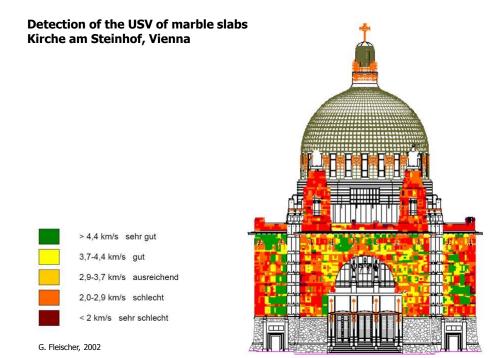


image: G. Fleischer, OFI

In situ investigation of building stones II. Measurement of ultrasound pulse velocity

Non-destructive method


Ultrasound pulses (20 kHz - 250 MHz) \rightarrow detection of time of transmission + distance \rightarrow velocity

- v = s/t [km/s]; s [mm], t [ms]
- → material characteristics (dinamic module of elasticity)
- \rightarrow damages, cracks, etc.

concrete: 4.0...5.0 km/s marble (sound): 5.4...6.7 km/s, marble (altered): 1.0...3.0 km/s. sandstone: 2.0...4.3 km/s

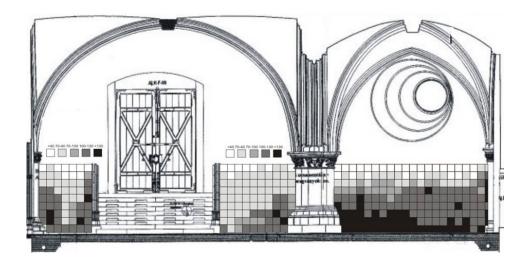
Measurement of moisture

Measurement of conductivity (resistivity)

The electrical resistivity of solid matter changes due to moisture:

Low material moisture \rightarrow higher electrical conductivity

Resistivity is influenced by other parameters (T, denisty, salt content, composition, etc.)


Measurement of the electric field

The device measures the changes of the electric field formed between the substrate and the device due to moisture.

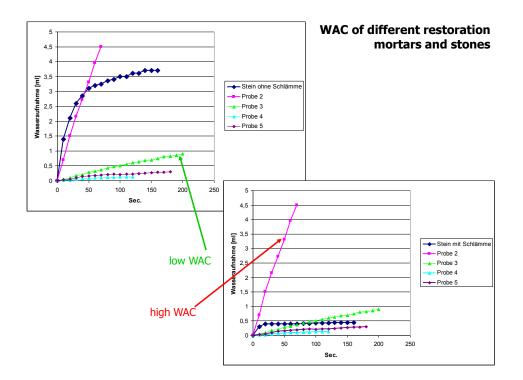
The presence of damaging salts also influences the results!

Mapping of the distribution of mositure (and salts) in the masonry of the Matthew church, Budapest

Measurement of water uptake capacity (WAC)

Karsten pipe

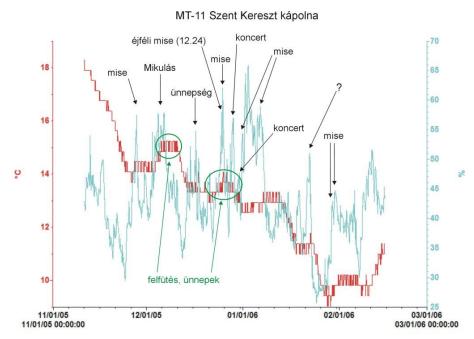
Simple device to measure the penetration of water in porous subsrates.


w-value (water uptake coefficient) can be calculated/estimated:

$$w = \frac{m}{A \cdot \sqrt{t}}$$

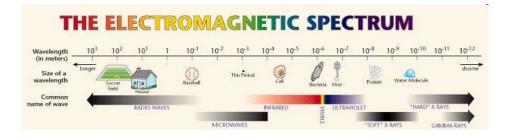
Field of use:

- water uptake of porous matters
- control of hydrophobic activity
- control/compairson of coatings

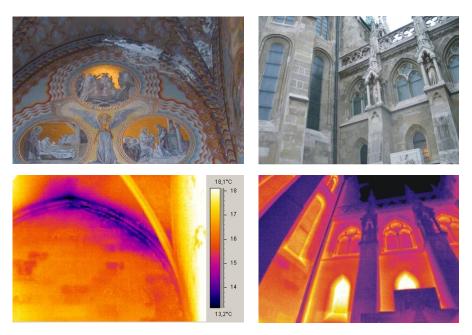


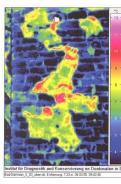
Climate measurement

Continuous collection of data with small size devices (logger).


Measurement of changes of the outer and inner climate (air / surface temperature, rH, light, etc.) $% \left({{\left[{{{\rm{B}}_{\rm{T}}} \right]}_{\rm{T}}}} \right)$

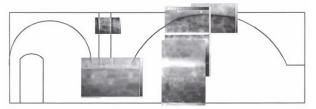
Measurement of T and rH in the Matthew church, Budapest


IR-Thermography

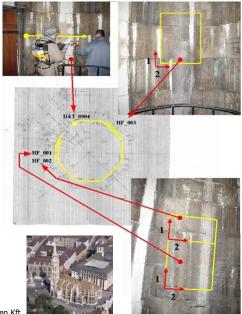

Above -273 °C all matter emits thermal radiation invisible for the human eye.

Thermographic cameras usually detect radiation in the long-infrared range of the electromagnetic spectrum (roughly 9–14 μ m) and produce images of that radiation (thermograms). Since infrared radiation is emitted by all objects with a temperature above absolute zero, thermography makes it possible to see one's environment with or without visible illumination.

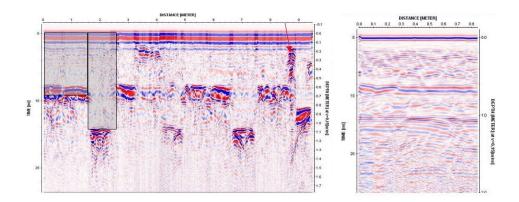
Passive thermography



Active thermography


Franzen et al, 2011

GPR (Ground Penetrating Radar) - Georadar


GPR uses high-frequency radio waves (10 MHz to 2.6 GHz). A GPR transmitter and antenna emits electromagnetic energy into the ground. When the energy encounters a buried object or a boundary between materials having different permittivities, it may be reflected or refracted or scattered back to the surface.

The intensity of signals depends on the differences of the electrical conductivity (permittivity) of matters.

e.g: stone-cavity, stone-metal bar

Images: Burken Kft

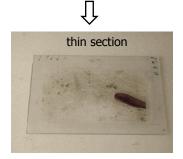
Heterogeneous (left) and homogeneous (right) masonry.

Images: Burken Kft

Sampling



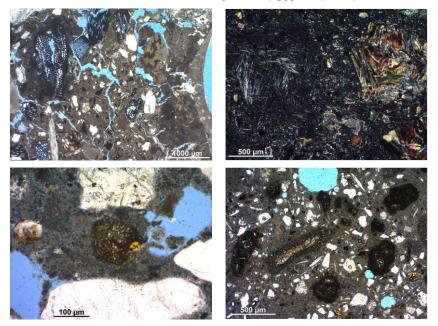
- careful documentation (description, photo, sketch);
- sampling from an appropriate place;
- quality and quantity of samples;
- what do I want to know?
 (possibilities and restrictions)



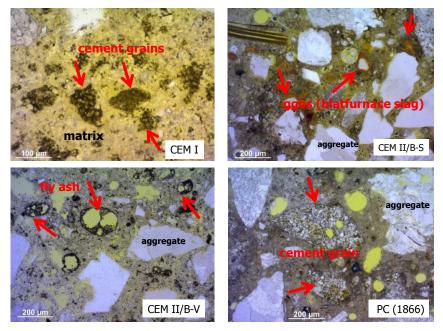
Optical microscopy

thin section: transparent section of 25 - 30 µm thickness

Why use optical microscopy on thin sections?

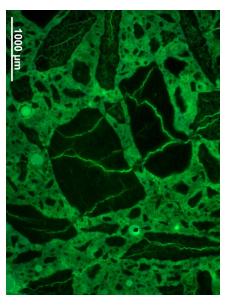


Investigation of composition (phases) and spatial distribution of components (texture/fabric) at the same time


- mineral components (rock type, aggregate, additives, • artificial mineral phases, etc.) No guessing!

- binder (lime, gypsum, hydraulic, etc.)
- binder to aggregate ratio (image analysis)
- porosity
- w/c ratio (POL-UV microscopy)
- joints, (micro) cracks (shrinkage, freeze-thaw damage)
- stratigraphy, paint layers (pigments)
- weathering/alteration/deterioration/durability (carbonation, sulfate attack, ASR, DEF, etc.)
- production technology, workmanship
- "chronology"
- preparing for further analysis (e.g. SEM-EDS, XRD)
- cheap, fast, but it needs experience, "only" 2D

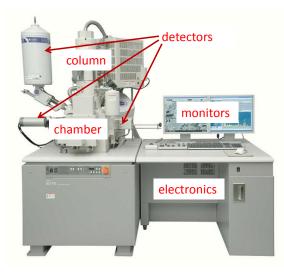
Historical mortar binders in the microscope: lime, gypsum, NHL, Roman cement



Portland cement and concrete under the microscope

Investigation of porosity and microcracks in PLM and UV-light

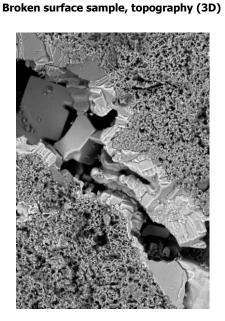
UV-light



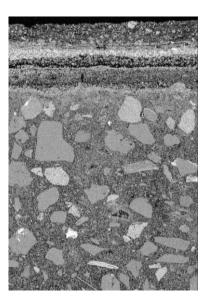
2x lime wash

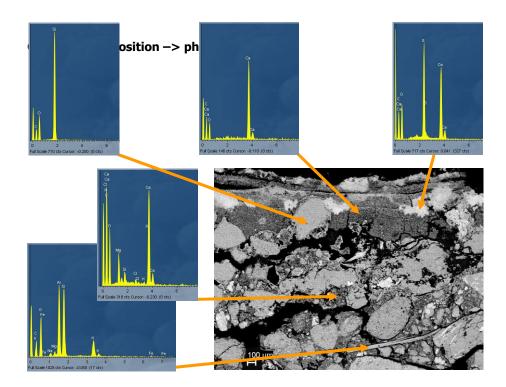
Historical discoloration of façades

What is SEM?

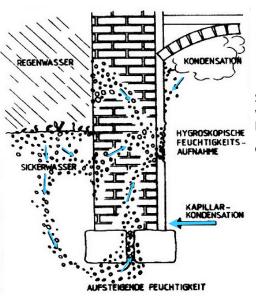


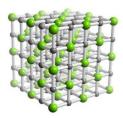
Scanning electron microscope (SEM) is a microscope that uses electrons to form an image.


Applications:

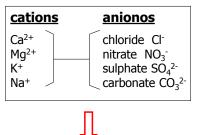

- topography
- morphology
- chemical composition

Magnification: 50x – 1000000x Depth of field: 4mm – 400nm Resolution: 1-10nm


Polished surface, textural image (2D)



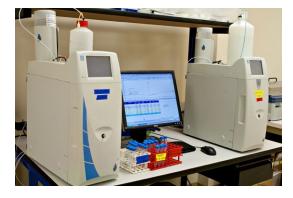
Investigation of damaging salts



Salts -> phases with ionic bonds, where the crystal lattice contains at least a cation and an anion.

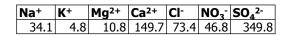
e.g. $Na^+ + Cl^- - NaCl$ (halite, rock salt)

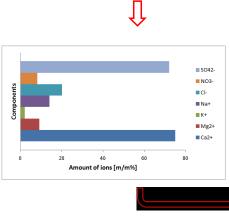
Rahn & Müller, 2006

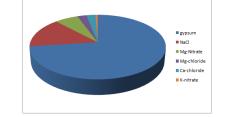

Most common damaging salts

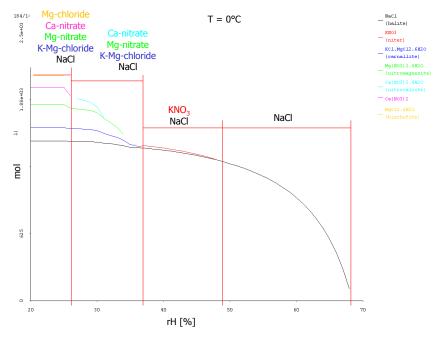
anions cationos	Carbonate CO ₃ ²⁻	Sulphate SO4 ²⁻	Chloride Cl ⁻	Nitrate NO ₃ -
Sodium Na ⁺	Na ₂ CO ₃ (x·H ₂ O)	Na ₂ SO ₄ ·10H ₂ O	NaCl	NaNO ₃
Potassium K ⁺	K ₂ CO ₃	K ₂ SO ₄	ксі	KNO ₃
Magnesium Mg ²⁺	MgCO ₃	$MgSO_4$ kieserite (H ₂ O) hexahidrite (6·H ₂ O) epsomite (7·H ₂ O)	MgCl ₂	Mg(NO ₃) ₂
Calcium Ca ²⁺	CaCO ₃	CaSO ₄ ·2H ₂ O) gypsum	CaCl ₂	Ca(NO ₃) ₂ ·4H ₂ O

Salt analysis – Ion chromatography (IC)


Ion chromatography is a chromatography process (i.e. a laboratory technique for the separation of a mixture). The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase that separates ions based on their affinity to the ion exchanger (i.e. anion- and cation-exchange)


qualitative and quantitative analysis of salt ions in an aqueous solution


Interpretation of data I. - Solubility range of components


Concentration of ions in the sample ([mg/l] or [ppm]):

	salt/salt _{TOTAL} [m/m%]	salt/sample [m/m%]
gypsum	72.4	2.8
NaCl	14.9	0.6
Mg-nitrate	6.4	0.25
Mg-chloride	2.5	0.1
Ca-chloride	2.5	0.1
K-nitrate	1.2	0.05

Interpretation of data II. – Thermodynamic model